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Extension of Volterra Analysis to Weakly
Nonlinear Electromagnetic Field Problems
with Application to Whistler Propagation

DONALD C. DALPE, GORDON KENT, SENIOR MWBER, IEEE, AND DONALD D. WEINER,
ME~ER, IEEE

Abstruct -In this study, Volterra amdysis is extended to weakly nonfin-

ear electromagnetic field problems. Generafiied Green’s functions and

their Fourier transforms are introduced. These are used to express the nth

order system response explicitly in terms of the system input, Although the

theory is developed in general, homogeneous media are assumed in the

examples for simplicity.

Application of the Volterra approach is illustrated by investigating

whistler-mode propagation in a cold collisiotdess electron plasma. After de-

fining the nonfinear differential equations for propagation at an angle 0 to

the uniform magnetic field, exponential probing inputs are used to generate

the generafixed Green’s functions. The second-order responses, which are

expressed in terms of the generalized Green’s functions, are examined in

detail. Computer programs are used to numerically evaluate the seeond-

order response to a sinusoidafly varying time function.

I. INTRODUCTION

T

HE VOLTERRA functional series [1] has been suc-

cessfully applied both to weakly nonlinear circuit

problems [2] and to nonlinearly loaded antenna problems

[3], [4]. In this paper, the Volterra series approach is

extended to weakly nonlinear field problems. Creneralized

Green’s functions are defined and evaluated for the whis-

tler-mode of propagation.

II. GENER-UXZED GREEN’S FUNCTIONS

It is sometimes useful to characterize a linear electro-

magnetic field problem in terms of its Green’s function. In

the case where both spatial and time variation are of

interest, the Green’s function is defined by the input–out-

put relation

where & is the linear system operator, 8 (.) is the impulse

function, g(. ) is the Green’s function, 7 is the spatial

vector, and r is time. The Green’s function, therefore, is the

system response to an excitation which is impulsive both in

space and in time.

Consider the response a(il t) to an arbitrary scalar input
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$( Z[t), such that

&{$(71t)}=a(i/t). (2)

It is well known that the response can be expressed as

where, in the analysis that follows,

A weakly nonlinear field problem may be contieniently

analyzed by means of the Volterra approach, where an(il t)

is the n th order response and the total response a(;l t) is

given by

a(;lt) = j ati(;lt). (5)
~=1

Volterra analysis is most useful when the field a(ll t ) can

be approximated by a small number of terms N. Then

a(ilt)= j an(ilt). (6)
~=1

The truncated sum implies that higher order terms do not

contribute significantly to the field.

The nth order portion of the field can be written in

terms of the generalized Green’s function of order n and

the input as

an(;lt)=J /. ““-/Ft%(~,~1,r2,”. t).,rnlt, tl, t2,. ... ~
Erl ~2t2 II.

“Pli, ww) @% o)

where

11 $(;ltp) drpdtp =j’(F,[t,)$(72[t2)...
—~=1

.j.(~nltn) dr, dt, drzdtz” “” drndtn. (8)
—. —
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Fig. 1. Representation of a weakly nonlinear electromagnetic field prob-
lem with generalized Green’s functions.

homogeneity and time invariance, the linear Green’s func-

tion can be written as a function of F – 11 and t – tl. The

n th order portion of the field is then given by

.gn(7–i,,7 –i2,. ... Fnltltl ,1, t–t2,. ... tn)n)

n

“pn,wwp)fy~p

=J,t,J2,2”””Jt~n(71!72,”””,inlt,,t2,...n)n)
?!.

n

“pry-w-b) d’, dtp. (9)

A block diagram of the Volterra series model for weakly

nonlinear electromagnetic field problems is shown in

Fig. 1.

The Volterra kernel of (9) g~(;l, ;.,. . .,;~ltl, tz,. . .,t~) is

referred to as the generalized Green’s function of order n.

Its Fourier transform is defined by

=J,,,J2,2””Jt”~n(7,,72,..,i,l,,r2,...,in)
“n

- fi e-J(;P”;P-’’’J”P) drPdtP. (lo)
~=1

The transform notation that has been adopted involves the

use of capital letters for functions that have been Fourier

transformed from the time to the frequency domain, and

the use of square brackets [.] for functions that have been

transformed from the smatial to the wavenumber domain.

The transform nomenclature is illustrated below:

gn(~l,iz,”””,znltl,tz,”””,tn)

[-- -%n kl>kz>”.”)knltl,tz>.””>tn]
. .

-G~[kl,kz,””.,k~lu1,u2, . . .
t

1,C.)n.

gn(~l,72>”””>inltl,t2,”””,tn)
. .

~Gfl(rl,rz,... ,in[u,, @2,..., Con]
t

;
[-- -*G~ kl, k2, ..” 1,knlu1,a2,...,a~ .

III. CLASS OF FIELD PROBLEMS WHERE THE

FUNCTIONAL FORMULATION Is APPROPRIATE

The Volterra functional series representation is particu-

larly useful when a characterization of the system is desired

such that the outp”ut due to a whole set of inputs is of

interest. The technique is suitable to the analysis of weakly

nonlinear electromagnetic field problems for suitable small

excitations. The mild nonlinearity requirement insures that

only a few generalized Green’s functions are needed in

order to adequately characterize the system.

In the development of the functional formulation, the

concept of an analytic system was suggested [1] for systems

representable by a convergent Volterra series. An analytic

system is one which satisfies three properties:

1)

2)

3)

it is deterministic-for a given input there is only one

possible output;

it is invariant — the relationship between the input and

output is independent of shifts in any of the indepen-

dent variables;

the system cannot introduce any abrupt changes in its

output, i.e., abrupt changes in the output must be due

to similar abrupt changes in the input.

In general, it is not always easy to determine if a system is

analytic. Ku and Wolf [5] consider the question of what

class of nonlinear systems may be represented by a Volt-

erra functional series. They suggested that nonlinear sys-

tems, represented by differential equations (where the non-

linearity can be represented by an analytic nonlinear func-

tion of the outputs and their derivatives) were suitable for

the functional formulation.

The other obvious requirement for application of the

functional formulation to the solution of a nonlinear elec-

tromagnetic field problem is that the linearized system be

representable by a linear Green’s function characterization.

IV. MULTIPLE INPUT/MULTIPLE OUTPUT

VOLTERRA SERIES

In (3), modeling of the input/output characteristics of a

system was restricted to systems with a single input and a

single output. Fields are vector quantities and the solution

to an electromagnetic field problem may involve de-

termination of more than one vector field. In addition. the. .-
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excitation may be one or more vector quantities. Thus, in where for three inputs, the n th order response is given by

many problems, modeling of a field problem results in a n n—ml

multiple-input/muItiple-output system model. aJ71t) = x 2 a(n–ml–m2, ml, m2)x (; It) (13)

Consider the problem of modeling the system with the m,= Om2=0

vector input $(7 It) and the output U( 7 It).Each compo- and forn=n1+n2+n3
nent of the vector field ii is assumed to be given by a

Volterra functional series. The Volterra series is a generali- %,,n,,n,)x(~l~)

zation of the Taylor series expansion for representing a

nonlinear system. The multiple input Volterra series can be

written by the same sort of generalization froql the multi-

variable Taylor series. Consider an excitation $, whose x- ,

y- , and z-components are denoted by $-X, $Y, and $Z. The

x-component of the vector field ii can be written as

n1+n2

“ H $y(~-z,lt -q,) db,dtp,
p2=n1+l

ii $z(-t,l t-j),)&t,3
p3=n, +n2+l

where n = n, + n ~ + n ~. By definition

n

~ (.)=1.
p=n+l

Note that (11) contains three linear Green’s functions

ga(,,o,o,fi, >72, ”””,inlt,, t2>”””9tn)

ga(o,,,o)f7,,72,. ””,?nli,, t2,. ”., tn)

ga(o,o,,)f7,>72, ”””> Ynlt,,t2>”””>~n)

six second-order generalized Green’s functions

ga(,,,,o)J~,,i2,”””,~nlf,>t2>”””>~n)

g@(,,o,,,f7,,72,. “ “,in/t,,tZ, ”””,tn)

ga(o,,,,)f7,,72, -”,inp,, t2, ”””,tn)

ga(2,0,0,fi,,72,. ”.,inlt,, t2,. ””,tn)

‘J,J2,”””J,ga(.1n2.3)f7172””
n“

- ii u-w-$,)%, dtp,
p,=l

nl+n~

“ II $Y(f–z,lt–tp,) db, dtp,
p2=n1+l

n

rI $’z(~-;,lw,) d%, dtp,.
p,=nli-nz+l

In summary, the Volterra approach to the

input/multiple-output nonlinear field problem

(14)

multiple-

s to as-

ga(o,o,2J7,,72,. ””,in[t,, t2, ”””,tn)

plus higher order generalized Green’s functions.

The multiple-input Volterra series can also be written as

the sum of terms of order n

sume that each output can be written in terms of a Volterra

series. The n th order portion of the output field is written

in terms of the sum of 4n-fold integrations involving

generalized Green’s functions of order n and the inputs.

(11) V. GENERATION OF GENERALIZED GREEN’S

FUNCTIONS

In the Volterra analysis of nonlinear systems, exponen-

tial probing inputs prove quite useful. For electromagnetic

fields problems, the input is chosen to be in the form of the

sum of plane waves. The choice of a complex exponential

excitation is simply a mathematical artifice and in no way

restricts the validity of the solution since the Green’s

functions are independent of the form of the input. The

Mth order generalized Green’s function can be found by

selecting the input to be the sum of M plane waves. For the

single-input problem, the excitation ii given by

(15)
~=1

Using the definition of the Volterra response in (5) and (9)

and the definition of the Fourier transform in (10), the

output field is written as

m MM

.+
. ej[(km, +kmz+. . .kmn). ~–((em, +%+2+. .~rnn)~l. (16)

The input and output can then be substituted into the

nonlinear differential equations describing the problem.

Using the linear independence property of spatial and\or
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time exponential it is possible to separate out the algebraic

equation containing only terms of Mth order with ex-

ponential behavior given by
-a-

~j[(k, +k*+. .kM).;–(u, +02+. .tiM)t]

The resultant equation will contain generalized Green’s

function transforms of order M plus terms of products of

lower order transforms of generalized Green’s functions.

The sum of the orders of all terms in a product will be

equal to M. Thus, the Mth-order generalized Green’s func-

tion transforms can be written in terms of lower order

generalized Green’s functions transforms and the solution

procedure can be considered to be a “bootstrap” opera-

tion. Starting with the linear Green’s functions, as many

generalized Green’s functions as are needed to adequately

characterize the nonlinearity can be generated.

Once the generalized Green’s functions in the wave-

form/frequency domain have been obtained, inverse Four-

ier transform techniques are used to write generalized

Green’s functions in the spatial and/or time domain as

required.

VI. SIMPLE ONE-DIMENSIONAL EXAMPLE

An example used in many text books on elementary

electromagnetic field theory to demonstrate the use of

Gauss’s law involves an infinite plate of constant surface

charge density us located in the x – y plane at z = ZO. Using

Gauss’s law in integral form and+ the usual symmetry

arguments, the electric flux density !0 is given by [13]

‘a=uJu(z–zo)–+]2 (17)

where U(o) is the unit step function.

Now, assume a medium with a nonlinear relationship

between the scalar electric field intensity and electric flux

density given by

6D,=6&= +(x&: (18)

where c and a are constants. For z > ZO, and for small a

(mild nonlinearity assumption), the electric field intensity

can be shown to be given by

&z=++(,+y)”2]

‘H%)’+’(:)’(%)’-”””(1’)
This problem can also be solved using a Volterra func-

tional series formulation. Gauss’s law in point form is

given by

v.~=p (20)

where p is the volume charge density. A symmetrical

problem will be assumed where p is constrained to be a

function of z only. Using this symmetry, the differential

equation becomes

:~,(z)=p(z). (21)

Substituting (18) into (21) yields

c;&z(z)=p(z)– a:&:(z). (22)

Assume a Volterra series solution of the form

‘$-z(z)= i %=(z) (23)
~=1

where the n th-order z-component is given by

&nz(z)=JJ ..jgn(z,, z’,.. .,zn) fj p(z–zp)dzp.
z, 22 z. ~=1

(24)

By employing exponential probing inputs, expressions for

the first three generalized Green’s functions in the wave-

number domain are found to be

(25)

g’[fh>~’zl= -:d~lzld~’,l

‘-(3(+(72) (2’)
and

k ].-~
g3[kl, > k2z, 3, 36 {g1[hz]g2[Lz, k3z]

+gl[Lz]g2[klz>k3z]

+gl[~3z]a[%z >k2z]}.

‘%ak)k) ’27)
Generalized Green’s functions in z-space are obtained via

inverse Fourier transforms. Therefore

%k)=:[u (z,)-;]. (28)

g2(zl>z2)= –:[W)-H[UZ2)-H (29)

and

g’(zl, z’, z’)= :[U(Z1)-+][U(Z2 )-+][U(ZJ-+].

(30)

In this model, the infinite plate of constant surface

charge density us located at z = ZO is representable as the

input

p(z)= rJ@(z-zo). (31)

The output is written in terms of generalized Green’s

functions by substituting (31) into (24) and then into (23)

to get

m

&z(Z)= ~ u:gn(z– zo, z–zo,. ..,zo)o). (32)
~=1
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For z > ZO, the output is given by

6,=%-:(%)2+2(:)2(2)3--(33)
The Volterra functional series and the generalized

Green’s functions have been used to model a hypothetical

mildly nonlinear field problem. The output field due to a

specific excitation was found to agree with the more classi-

cal solution given in (19).

VII. INTRODUCTION TO THE WHISTLER MODE

Electromagnetic wave propagation through an infinite

unmagnetized plasma is cut off at frequencies below the

electron plasma frequency WP, but in a magnetoplasrna,

such as the ionosphere, a window is open for propagation

in the frequency range below the electron cyclotron

frequency UC. The vector wavenumber ~ is real in> cone-

shaped region with axis along the magnetic field B~, and

cone angle O~Es. When the propagation direction is along

the static magnetic field, the wave is right-hand circularly

polarized [6], [9]. Since the plasma in which they travel is

dispersive, the different frequency components of these

waves are spread out in time. The whistle-like sound of

detected waves of this type propagating through the iono-

sphere is the origin of the name “whistler”. Natural whis-

tlers are believed to originate with atmospheric dis-

turbances, such as lightning.

The nonlinear mechanisms that affect the propagation of

whistlers are in two categories. The first depends on the

heating of electrons by the RF fields tid the variation of

the electron collision frequency with temperature. The re-

sult is a nonlinear component of current that is propor-

tional to the third power of the field, and one effect is the

generation of third harmonics. The second mechanism,

which occurs at any electron temperature, is in part the

radiation pressure of the wave [10]. The resulting nonlinear

current is proportional to the second power of the field,

and one effect is the generation of second harmonics.

Although the thermal nonlinearity is the larger at modest

field intensities [11], there are some interesting aspects of

the radiation pressure effect that merit study of this nonlin-

earity.

Harmonic generation in plasmas is generally a weak

effect because the dispersion is not compatible with the

harmonic relationship of wavenumbers, i.e., the resonance

condition [12]. In the case of the whistler mode, however,

the resonance condition for the second harmonic and the

dispersion relation can be satisfied simultaneously for cer-

tain frequencies and cone angle. Under these conditions,

the second harmonic is greatly enhanced.

The whistler mode propagating parallel to the magnetic

field is an exact solution to the field problem including the

electromagnetic nonlinearities. An interesting question to

be answered is how the nonlinear interaction products vary

with cone angle.
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VIII. NONLINEAR DIFFERENTIAL EQUATION

FORMULATION FOR THE WHISTLBR

The whistler is assumed to be propagating in an infinite,

cold, collisionless, electron plasma that is uniformly mag-

netized. On the average, charge neutrality is assumed with

a background of immobile positively charged ions of den-

sity n ~ ions per cubic meter, and a collection of mobile

negatively charged electrons having an average density also

equal to no. The set of vector nonlinear differential equa-

tions governing whistler propagation are

a%
vx&+po==o (34)

VX%–tO~= –enOZ+cO(V.;)ti+$l (35)

~+q~+fi Xtic=-(ti. V) fi-qWOti X% (36)

where ~, %, and Z are the time and spatially varying

electric field intensity, magnetic field intensity, and velo~-

ity vectors; tic is-the electron vector cyclotron frequency; jl

is the impressed current density; and q is the elec~ron

charge to mass ratio. Note ~he nonlinear terms, CO(v. & )3,

–(Z. v)Z, and – qpo~ X % in (34)-(36).
The problem to be investigated involvej the nonlinear

whistler propagation in the direction of k at an Angle d

with respect to the static magnetic flux density BM. To

explore solutions wk~ch are uniform waves propagating in

the z-direction (i.e., k = kz2), it is convenient to write

G= f&x(z/t)+ j&y(zp)+E&z(z/t) (37)

%= fxx(zlt)+ j%y(z]t)+2%z(zlt) (38)

and

ti=fox(zli) +yoy(zlt)+ ~vz(zlt). (39)

In order to excite the circularly polarized waves of the

whistler mode, Lee [6] applies current sheets using dense

arrays of filamentary conductors perpendicular to each

other and to the direction of propagation, such that

j,= fa(z)$x(t)+ja(z) $,(l). (40)

The impressed current source in this analysis is assumed to

be of the more general form given by

II= f$,fzlt)+$%,jzlt). (41)
.>.

IX. GENERATION OF GENERALIZED GREEN’S

FUNCTIONS IN THE TRANSFORM DOMAIN

The nonlinear problem as described in (37), (38), and

(39) involves a system with the two inputs– $X and $-, –and

nine outputs—the three components of the three vector

fields. A Volterra series solution is given by

(42)%(zl~) = i,’%w)

for a =&, %, and v and for ~= x, y, and z. The nth order
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portion of the fields due to the two excitations k given by For m = 0,1, c“ o, and M, where

4Jzl~) = i a(n,,n–n,)t(zl~) (43)
nl=O

where
and

M

~=1

(49)

. (z,, z2,...,znli,, t2,tn), tn)
~=1

The components of the Mth-order driving term ~~_~, ~, [ o]

“p~, $lJz-zpllt -tp,)dzpldtp,
are made up of the sums of products of lower order

— transforms of the generalized Green’s functions.

“ ii $Jz - zp,l~ - $,) dzp,dtp,. (44) X. SOLUTION OF NONLINEAR WHISTLER PROBLEM

p2=n, +l FOR INPUT THAT IS SINUSOIDAL IN TIME AND

Note, for each of the nine outputs there are two first-order
IMPULSIVE IN SPACE

terms a(l,o)g(z It) and a(o, l)$; I t) corresponding to inputs In order to excite the right-hand circularly polarized

$,Jz It) and $,Jz It), respectively. waves of the whistler mode in the laboratory, Lee [6]

Using plane-wave probing inputs, the nine dimensional suggests the use of dense arrays of filamentary conductors

vectors of linear Green’s functions in the wave- perpendicular to each other. For a wave propagating in the

number/frequency domain are given by + z-direction, the impressed current density is of the form

\
G(,_m,m)[k,l@] ‘,W,IW; G (45)

I (

for m = O and 1; where

II

o
0
0

== l;m

and

D[k,l&l]=

Ho
0
0.

0 – jkz

jk= O

0 0

~(zlt)=cl{cOs(tiOt)i +sin(tiOt)j} d(z). (51)

The vector of nine linear output components m is

given by

\
==~cl{~— jG(o,l)(z[ —ao)}ejwof

A linear Green’s function in the spatial/frequency domain

Gl(z Iu) is related to G1[k= [Q] via the inverse Fourier

O ~ –jtqto O 0:0 0 0

0;0 – j~po o’

0:0 0 – jwpo
——— -—— —’—— ——— ——— ——— —__ju;o o ()!() – jkz o

0 jticO O I jkZ o 0

00 jtico : 0 0 0

0 0 0

0 0 0
————
en o 3---6-

0 en ~ o

0 0 en o
1————————— —,————————— ————–

(47)

In the Volterra series, formulation of the nonlinear whistler problem, the Mth-order portion of a field component, as

given in (43), contains M + 1 terms. Thus, characterization of the Mth-order behavior involves determination of (M + 1),

Mth order generalized Green’s functions for each of the field quantities of interest. The Mth-order generalized Green’s

functions in the transform domain are given by

\ \
G(M_~,M)[klz, k,z,.. ”,k~zltil, o,,...,oM] =D[k:&-l ~M_~, ~)[k,z, k,z, ”..,k~z\@1,02, ”.”,@M] . (48)
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transform

Gl(zl~)=~~G,[k,lti] .’kzzdkZ. (53)
z

For the input given in (5 I), the ve<tor of nine second-

order output field components a2( z It ) is given by “
\ \

a2(zlt) =ict{ G(2,0)(z, ZI —UO, —@o)

\
–jG(,,,)(z> z[–oo, –q))

– G(o,2)(z, zl –@o, VUO
j}e@Ot

+*c;{G,2,0,(z,zl@o,@J+jG(1,,,(z,zl@o,6J
\

– G(0,2)(z, ZI tie, tie) }e-j2@of

{++c: 2G(2,0)(z, ZI ‘@O>@O7 +~G(l,,,(zA -=iz3
\

–~G(I,I)(Z~ZILJO>–wo) –2G(0,2)(z, zl ‘~o,~}. (54)

Evaluation of the output requires knowledge of the gener-

alized Green’s functions in the spatial/frequency domain

for specific values of frequency. A second-order gener-

alized Green’s function in the spatial/frequency d~main

G2(z1, z2~u1, U2) is related to G2[k1z, k2Zlu1, 02] via the

two-fold inverse Fourier transform relationship

.
,!

. ~ ejk~.z~ dkPz. (55)

In particular

)1G2(z, z[al, u2)=G2(zl, z21@17@2 Z,=,*=Z (56)

is desired for specific values of u, and ti2 (* Uo).

The above procedure requires performing a two-dimen-

sional inverse transform followed by an association of

spatial variables (i.e., z, = Z2 = z). A more attractive proce-

dure is to associate variables in the transform or wavenum-

ber domain such that only a single dimensicmal inverse

Fourier transform is required. This association of variables

in the transform domain was originally developed by

George [7]. George’s technique is applied to the evaluation

of G2(z, z Iu 1U2) for the nonlinear whistler problem in
Dalpe [8].

XI. NUMERICAL COMPARISON OF THE FIRST- AND

SECOND-ORDER PLANE-WAVE RESPONSIM

A plane wave propagating in the + z direction with

angular frequency ~, has the form ~J(kzZ– ‘@. The linear
plane-wave response with angular frequency ~. is now

compared to the second-order plane-wave response at an-

gular frequency 2 tie.

From (52), that portion of the linear response that can

contribute plane waves propagating in the + z-

direction with angular frequency U. is given by

h{-+j-}e’’””’. (57)

Likewise, from (54), the part of the second-order response

that can.contribute plane waves propagating in the + z-di-

rection with angular frequency 2tJ0 is given by

\
— G(0,2)(z, z Itoo, too) }e-~2’OOt. (58)

The generalized Green’s functions in the wavenumber

domain for constant u can be written in terms of expan-

sions in terms of the poles in k,-space. The required

z-space expressions are given by the corresponding inverse

Fourier transforms. Plane-wave solutions of the form de-

sired correspond to positive real poles in kz-space. The

positive real poles yield plane waves of the form desired.

Solution of the linear dispersion relation (Appleton–

Hartree dispersion relation [9])

k2~2= _z
—=1

m

[ 1
1/2

~2 _ 6@2 sin20 @04sin40& z + ~2u;co52e
2(0AJ:) 4( CAJ;)

(59)

for propagation in an infinite homogeneous collisionless

plasma with u = ~. yields the poles in kz-space. For whis-

tler mode propagation, only one real positive pole exists

(p, ). The second-order generalized Green’s functions in
the wavenumber/frequency domain contain two poles in

k,-space for u,= U2 = @ that can be real and greater than

zero. The pole at 2p ~ is positive-real for all O. where the

linear whistler propagates. The pole at q, corresponds to

the positive-real root of k, in the linear dispersion relation

for w = 2 U. (if it exists). The second-order response due to

the sinusoidally varying time function given in (53) con-

tains terms with exponential behavior given by eJ(2Plz–200f)

and ejt~’z–2@0t). Note that the second-order response con-

ttins two plane waves with different phase velocities due to

the different propagation constants (2p ~ and ql ). A com-

puter program was written to numerically evaluate the

linear and second-order plane-wave responses. In Figs. 2

through 5 the magnitude of the linear response and the

magnitudes of the ratio of the second-order responses to

~he linear response are plotted for the x-component of the

& field.

As was stated earlier, plane-wave propagation corre-

sponds to real poles in kZ-space. Real poles exist for cone

angles less than the resonance cone angle 0M5. As 0

approaches ~m~, the real poles of the whistler in kZ-space

approach infinity. The equation for the resonance cone is

given by

(U:–uq(+d)
tan2eRES =

2( )“

(60)
u (J; +U:-W2
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In Figs. 2 and 4, the magnitudes of the plane-wave

responses are plotted as a function of the excitation

frequency UO for 0 = 45°. As U. increases, the resonance

condition (60) is approached and the poles ii kZ-space

approach infinity and become imaginary for lawger values

of 00. The wavenumber p, of the linear plane wave is

determined by the pole location for a = @O. Thus, the

linear plane wave and, consequently, the second-order plane

wave with wavenumber 2p, are cut off for

[ 1d+u; -(u$+uy 1/2
to. >

2
(61)

The wavenumber q} of the second-order plane wave is

determined by the pole location in kZ-space fcm u = 2 tiO.

This plane wave will cut off for

The expansion of the second-order Green’s functions in

terms of their k,-space poles has assumed that the poles at

2p1 and q, are distinct. Should 2pl = ql, a second-order

pole exists and the result is a term whose amplitude is

linear in z. Under these conditions, the convergence of the

Volterra series is questionable except for small z, but the

unbounded nature of the term can be removed by adding a

small amount of damping. The condition 2p, ==ql means

that both first- and second-order responses awe natural

modes for propagation, and the effect of the nonlinear

coupling is enhanced. Given that’ p, is a read pole for

a = aO, the condition under which 2p, is also a real pole

for ~ = 2 U. cart be derived from the linear dispersion

relation. For tiP > tiO, it is met when

If it is assumed that LOP.>00, then for a large range of S3less

than 90°, (63) can be approximated by

tic cos e
6).- ~ ..— (64)

In the ionosphere, the thermal nonlinearity, which gener-

ates a third harmonic, is generally dominant [11] and little

consideration has been given to the cold plasma mecha-

nisms treated here. Nevertheless, the relation given by (64)

may be satisfied for the second harmonic when a similar

relation for the third harmonic cannot be satisfied. Then,

the second-harmonic generation should dominate.
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XII. CONCLUSIONS

The Volterra functional series is a powerful tool in the

analysis of mildly nonlinear systems. A great deal of work

has been done by other investigators in developing the

theory as it applies to circuit type problems (problems

where the linear behavior is characterized by Iinearimpulse

response h(t)). The major emphasis of this work has been

the logical extension of the theory to systems whose linear

behavior is characterized by Green’s functions. A set of

generalized Green’s functions was used to characterize

mildly nonlinear electromagnetic field problems and to

predict system responses. Application of the Volterra ap-

proach was illustrated by investigating whistler-mode prop-

agation in a cold collisionless electron plasma.
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A Study of the Noise-Temperature
Performance of a Satellite Communications

Low-Noise Amplifier Subsystem

MITSUGI KAJIKAWA

Abstract —The heart of the low-noise ampfifier (LNA) subsystem is the

parametric amplifier which consists of a parametric amplifier proper and a

circulator. The LNA subsystem can be simplified into an equivalent circuit,

to evahrate its noise-temperature performance by assuming that it consists

of a parametric amplifier proper and a circulator, which in its overafl sense

includes the addltionaf components of the input line as elements in one arm

of the circulator. Using this simplified equivalent circuit, the noise-temper-

Manuscript received October 22, 1981; revised February 9, 1982.
The author is with the Microwave and Satellite Communications Divi-

sion of Nippon Electric Company, Ltd., Ikebe-cho, Midori-ku, Yokohama,
Japan.

ature performance is anafyzed theoretically and provides a precise vafue for

the LNA subsystem noise-temperature degradation, the noise-temperature

increase of the earth-station receiving system cansed by connecting an

actuaf antenua to the subsystem and the measurement error of the

HOT/COLD load noise temperature measurement method.

I. INTRODUCTION

I N A SATELLITE communications earth station, the

low-noise amplifier (LNA) subsystem is one of the

most important subsystems and its noise temperature per-

formance makes a major contribution to the figure of merit
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