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Extension of Volterra Analysis to Weakly
Nonlinear Electromagnetic Field Problems
‘with Application to Whistler Propagation
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MEMBER, IEEE

Abstract —In this study, Volterra analysis is extended to weakly nonlin-
ear electromagnetic field problems. Generalized Green’s functions and
their Fourier transforms are introduced. These are used to express the nth
order system response explicitly in terms of the system input, Although the
theory is developed in general, homogeneous media are assumed in the
examples for simplicity.

Application of the Volterra approach is illustrated by investigating
whistler-mode propagation in a cold collisionless electron plasma. After de-
fining the nonlinear differential equations for propagation at an angle 0 to
the uniform magnetic field, exponential probing inputs are used to generate
the generalized Green’s functions. The second-order responses, which are
expressed in terms of the generalized Green’s functions, are examined in
detail. Computer programs are used to numerically evaluate the second-
order response to a sinusoidally varying time function.

I. INTRODUCTION

HE VOLTERRA functional series [1] has been suc-

. cessfully applied both to weakly nonlinear circuit

problems [2] and to nonlinearly loaded antenna problems

[3], [4]. In this paper, the Volterra series approach is

extended to weakly nonlinear field problems. Generalized

Green’s functions are defined and evaluated for the whis-
tler-mode of propagation.

II. GENERALIZED GREEN’S FUNCTIONS

It is sometimes useful to characterize a linear electro-
magnetic field problem in terms of its Green’s function. In
the case where both spatial and time variation are of
interest, the Green’s function is defined by the input—out-
put relation

L{8(F—7)8(t—1,)} =g(F, 7|1, 1)) (D)

where L is the linear system operator, & (-) is the impulse
function, g(-) is the Green’s function, 7 is the spatial
vector, and ¢ is time. The Green’s function, therefore, is the
system response to an excitation which is impulsive both in
space and in time.

Consider the response a(r|t) to an arbitrary scalar input
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4(¥|¢), such that
L{§(F10)}=a(7]1). ()

It is well known that the response can be expressed as
a(Fl0)= [ g7 Rln0)§(FIn) dndy ()
nh

where, in the analysis that follows,

f drl dt, = f f f f dxl dy,dz, dt, . 4

ny T

A weakly nonlinear field problem may be conveniently
analyzed by means of the Volterra approach, where a,(7|¢)
is the nth order response and the total response a(r|t) is
given by

>}
a(F|t)= 3 a,(7|t). ®)
n /= 1
Volterra analysis is most useful when the field a(7|r) can
be approximated by a small number of terms N. Then
N
a(Flt)~ 2 a,(F|t). (6)
n=1
The truncated sum implies that higher order terms do not
contribute significantly to the field.
The nth order portion of the field can be written in
terms of the generalized Green’s function of order n and
the input as

a (rlt)——f f f_ 87 71, By

n Nt Tuln

"Fnlt’tl’tZ’“ '7tn)

S| (7 1t,) dryat, (7)

p=1
where
n
H g’(;}zltp) drpdtp =g’(;1|tl)g’(?2|t2)' :
p=1 -
$(7,\t,) drydt, drydty--- drdt,. (8)
a,(7|t) is of nth order in the sense that multiplication of

the input by a constant C results in multiplication of the
nth order output by C”. Under the assumptions of spatial

0018-9480 /82 /0700-1059$00.75 ©1982 IEEE



1060
al(?l t
~—| 5@y
'——1 gz(rl r,) t ,tz)
J(?I tg_
Fig. 1. Representation of a weakly nonlinear electromagnetic field prob-

lem with generalized Green’s functions.

homogeneity and time invariance, the linear Green’s func-
tion can be written as a function of 7 —7, and ¢ —¢,. The
nth order portion of the field is then given by

awrin=f [ [

nnTnt;

gn(r rl’ rZ’.“’r—;:n|t_

' ng(;;‘tp) irﬁdtp

p=

:‘/: _/: gn(;la;:za""Fnltl’tz""ﬂtn)

SUMEYS) Tuln

n
) HI?(F—fblt—tp)&dtp'
r=

t17t_t27”'7t_tn)

()

A block diagram of the Volterra series model for weakly
nonlinear electromagnetic field problems is shown in
Fig. 1.

The Volterra kernel of (9) g,(7,, 7, - .7, |t1s 15, +52,) 1S
referred to as the generalized Green’s function of order n.
Its Fourier transform is defined by
’En|wl5w2’. )

Gn[];bEZ"” '»“’n]

:f f / 'gn(F19a"."Fnltl’IZ"“’tn)
UMY Faly

] (10)

. = ey Ty 1)
[_I e oy ents) dr, dt),.

p=

The transform notation that has been adopted involves the
use of capital letters for functions that have been Fourier
transformed from the time to the frequency domain, and
the use of square brackets [-] for functions that have been
transformed from the spatial to the wavenumber domain.

gn(;:l”_:Z?”
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The transform nomenclature is illustrated below:
|ttt euty,)

;gn[él’g2" ' .’lznltl’t27' ) '7tn]

oG, [kyy kyy ey @0y, 0,0,
14

A ROV AT A RN
<t—>Gn(r1,r2,- L F W, @y, -,wn]
7 I -
“’Gn[kukz,' k@, @, .,wn].

III. CrAsS OF FIELD PROBLEMS WHERE THE
FUNCTIONAL FORMULATION IS APPROPRIATE

The Volterra functional series representation is particu-
larly useful when a characterization of the system is desired
such that the output due to a whole set of inputs is of
interest. The technique is suitable to the analysis of weakly
nonlinear electromagnetic field problems for suitable small
excitations. The mild nonlinearity requirement insures that
only a few generalized Green’s functions are needed in
order to adequately characterize the system.

In the development of the functional formulation, the
concept of an analytic system was suggested [1] for systems
representable by a convergent Volterra series. An analytic
system is one which satisfies three properties:

1) it is deterministic—for a given input there is only one
possible output;

2) it is invariant—the relationship between the input and
output is independent of shifts in any of the indepen-
dent variables;

3) the system cannot introduce any abrupt changes in its
output, i.e., abrupt changes in the output must be due
to similar abrupt changes in the input.

In general, it is not always easy to determine if a system is
analytic. Ku and Wolf [5] consider the question of what
class of nonlinear systems may be represented by a Volt-
erra functional series. They suggested that nonlinear sys-
tems, represented by differential equations (where the non-
linearity can be represented by an analytic nonlinear func-
tion of the outputs and their derivatives) were suitable for
the functional formulation.

The other obvious requirement for application of the
functional formulation to the solution of a nonlinear elec-
tromagnetic field problem is that the linearized system be
representable by a linear Green’s function characterization.

IV. MurripLE INPUT/MULTIPLE QUTPUT
VOLTERRA SERIES

In (3), modeling of the input /output characteristics of a
system was restricted to systems with a single input and a
single output. Fields are vector quantities and the solution
to an “electromagnetic field problem may involve de-
termination of more than one vector field. In addition, the
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excitation may be one or more vector quantities. Thus, in
many problems, modeling of a field problem results in a
multiple-input /multiple-output system model.

Consider the problem of modeling the system with the
vector input ¢ (7|¢) and the output a(7|¢). Each compo-
nent of the vector field a is assumed to be given by a
Volterra functional series. The Volterra series is a generali-
zation of the Taylor series expansion for representing a
nonlinear system. The multiple input Volterra series can be
written by the same sort of generalization from the multi-
variable Taylor series. Consider an excitation ¢, whose x- ,
y- , and z-components are denoted by ,, ¢, and ¢,. The
x-component of the vector field 4 can be written as

0 o0 00

a(flp=2 2 X [ |
m=0n,=0ny;=0"N"H"Ni
n#0

./: ga(nl,nz,ng)x(rl’ Faooe "rn|t1’ tl" te 7tn)
rnt’l

n
I ¢(F- t,,) dr, dt
=1 -
nt+ny
II %(7*?} )dr a,,
py=n+1

n

I &F-7

py=nt+ny+1

Jt=1,,) dr, dr, (1)

where n=n,; + n, + n;. By definition

n
I ()=L
p=n+l
Note that (11) contains three linear Green’s functions
1t,)
’Fnlth Iy, 'atn)
"Fnlth Ly, "tn)

six second-order generalized Green’s functions

8aq 0,0\ 1 125" IV LN PSR
ga(o,x,O)x(rl’ LT

Eapon 121257

8a1,1,08 ?1’ ;2" ’ "?nltntza' . ',t,,)
g"(l,o,l)x(?l’FZ" cF |t ty, s ty)
8o, Fl’Fz,' : ',7n|t1,12,. . "tn)
g“(zOO)( 1,7‘2,- * ’Fnltlatz,' . "tn)
g“(ozo)(rl’r2" . .’?nltl’tz,’ . .,tn)
8a.0.2)5 2N TR N [ 9 PO ot,)

plus higher order generalized Green’s functions.
The multiple-input Volterra series can also be written as
the sum of terms of order n

a(7l)= 3 an(Fl)

n=1

(12)
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where for three inputs, the nth order response is given by

n— my

nx(rlt)_ 2 2 An—m,— m2,m1,m2)x(r|t) (13)

m=0m,=0
and forn=n,+n,+n,

a(nl,nz,ng)x(ﬂt)

:'/r"ltf f g"("l"z"s)x( 1,)‘2, B "'tl’tz’ ) ’t")

1214

n
H g’x(;‘—?th_—tm) drPl dtPl
=1 -
ny+ny
I1 g(r—r t—-tpz) dr, dt,

pa=nyt+1 —

n

H ?Z(r—rpglt-‘tp3

p3=n+ny+1

) dr,, dt (14)
In summary, the Volterra approach to the multiple-
input /multiple-output nonlinear field problem is to as-
sume that each output can be written in terms of a Volterra
series. The nth order portion of the output field is written
in terms of the sum of 4n-fold integrations involving
generalized Green’s functions of order » and the inputs.

V. GENERATION OF GENERALIZED GREEN’S
Funcrions

In the Volterra analysis of nonlinear systems, exponen-
tial probing inputs prove quite useful. For electromagnetic
fields problems, the input is chosen to be in the form of the
sum of plane waves. The choice of a complex exponential
excitation is simply a mathematical artifice and in no way
restricts the validity of the solution since the Green’s
functions are independent of the form of the input. The
Mth order generalized Green’s function can be found by
selecting the input to be the sum of M plane waves. For the
single-input problem, the excitation is given by

M

Q(F)= 3 efthmT=an),

m=1

(15)

Using the definition of the Volterra response in (5) and (9)
and the definition of the Fourier transform in (10), the
output field is written as

=% 2 2

M — —
E Gn[kml’kmza' ) "km,l
m,=1

. ’wm,,]

,

mpw

m;’

) Tyt b c0n, ) (16)

The input and output can then be substituted into the
nonlinear differential equations describing the problem.
Using the linear independence property of spatial and/or
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time exponentials it is possible to separate out the algebraic
equation containing only terms of Mth order with ex-
ponential behavior given by

e/l tkyt - kpg) T—(wyteyt rwp)t]

The resultant equation will contain generalized Green’s
function transforms of order M plus terms of products of
lower order transforms of generalized Green’s functions.
The sum of the orders of all terms in a product will be
equal to M. Thus, the M th-order generalized Green’s func-
tion transforms can be written in terms of lower order
generalized Green’s functions transforms and the solution
procedure can be considered to be a “bootstrap” opera-
tion. Starting with the linear Green’s functions, as many
generalized Green’s functions as are needed to adequately
characterize the nonlinearity can be generated.

Once the generalized Green’s functions in the wave-
form /frequency domain have been obtained, inverse Four-
ier transform techniques are used to write generalized
Green’s functions in the spatial and /or time domain as
required.

VI. SiMPLE ONE-DIMENSIONAL EXAMPLE

An example used in many text books on elementary
electromagnetic field theory to demonstrate the use of
Gauss’s law involves an infinite plate of constant surface
charge density og located in the x - y plane at z = z,. Using
Gauss’s law in integral form and the usual symmetry
arguments, the electric flux density %) is given by [13]

D=og[U(z —z,)~1]2

where U(-) is the unit step function.

Now, assume a medium with a nonlinear relationship
between the scalar electric field intensity and electric flux
density given by

(17)

D =6, +ab? (18)

where € and a are constants. For z> z,, and for small «
(mild nonlinearity assumption), the electric field intensity
can be shown to be given by

b,=5—

) 1,2
—1+(1+ ““S) ]
. 2a

g2l (3 o

This problem can also be solved using a Volterra func-
tional series formulation. Gauss’s law in point form is
given by

€

v-D=p (20)
where p is the volume charge density. A symmetrical
problem will be assumed where p is constrained to be a
function of z only. Using this symmetry, the differential
equation becomes

2 @,(2)=p(2). 1)
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Substituting (18) into (21) vields

9 _ _ 0
g8 =p()magE(). @)
Assume a Volterra series solution of the form
6,(z)= 23 6,.(2) (23)

n=1

where the nth-order z-component is given by
6,.2)=[ [ -+ [&lziz0--2,) TI p(z~2,)dz,.
zZy 2y Zp p= 1
(24)

By employing exponential probing inputs, expressions for
the first three generalized Green’s functions in the wave-
number domain are found to be

1

gl[klz] = EZ;

o
g2[klz’ ky,]=— :gl[klz]gl[kZZ]

=~ (85 (7]

2a
gk, kyn ks ] == B¢ {gl[ku]gz[kzz» ks, ]

+g1[k22]g2[klz9k3z]
+g1[k3z]g2[klz’ k2z]}'

2 ) () )

Generalized Green’s functions in z-space are obtained via
inverse Fourier transforms. Therefore

gi(z) == [U(z)~4].

gz, 2,)=— :a; [U(Zl)‘%][U(Zz)_%]

(25)

(26)

and

(28)
(29)

and

(e 220 22) = 2 [U(z) - 4][0()— $][Uz0) 4]

(30)

In this model, the infinite plate of constant surface

charge density oy located at z = z, is representable as the
input

P(Z)zoss(zfzo)- (31)

The output is written in terms of generalized Green’s

functions by substituting (31) into (24) and then into (23)
to get

6z(z): 2 os"gn(z—zo,z—zo,---,z—zo). (32)

n=1
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For z >z, the output is given by

~EeRE (g o

The Volterra functional series and the generalized
Green’s functions have been used to model a hypothetical
mildly nonlinear field problem. The output field due to a
specific excitation was found to agree with the more classi-
cal solution given in (19).

VII. INTRODUCTION TO THE WHISTLER MODE

Flectromagnetic wave propagation through an infinite
unmagnetized plasma is cut off at frequencies below the
electron plasma frequency w,, but in a magnetoplasma,
such as the ionosphere, a window is open for propagation
in the frequency range below the electron cyclotron
frequency w,.. The vector wavenumber k is real in a cone-
shaped region with axis along the magnetic field B,,, and
cone angle #yzs. When the propagation direction is along
the static magnetic field, the wave is right-hand circularly
polarized (6], [9]. Since the plasma in which they travel is
dispersive, the different frequency components of these
waves are spread out in time. The whistle-like sound of
detected waves of this type propagating through the iono-
sphere is the origin of the name “whistler”. Natural whis-
tlers are believed to originate with atmospheric dis-
turbances, such as lightning,

The nonlinear mechanisms that affect the propagation of
whistlers are in two categories. The first depends on the
heating of electrons by the RF fields and the variation of
the electron collision frequency with temperature. The re-
sult is a nonlinear component of current that is propor-
tional to the third power of the field, and one effect is the
generation of third harmonics. The second mechanism,
which occurs at any electron temperature, is in part the
radiation pressure of the wave [10]. The resulting nonlinear
current is proportional to the second power of the field,
and one effect is the generation of second harmonics.
Although the thermal nonlinearity is the larger at modest
field intensities [11], there are some interesting aspects of
the radiation pressure effect that merit study of this nonlin-
earity.

Harmonic generation in plasmas is generally a weak
effect because the dispersion is not compatible with the
harmonic relationship of wavenumbers, i.e., the resonance
condition [12]. In the case of the whistler mode, however,
the resonance condition for the second harmonic and the
dispersion relation can be satisfied simultaneously for cer-
tain frequencies and cone angle. Under these conditions,
the second harmonic is greatly enhanced.

The whistler mode propagating parallel to the magnetic
field is an exact solution to the field problem including the
electromagnetic nonlinearities. An interesting question to
be answered is how the nonlinear interaction products vary
with cone angle.
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VIII. NONLINEAR DIFFERENTIAL EQUATION
FORMULATION FOR THE WHISTLER

The whistler is assumed to be propagating in an infinite,
cold, collisionless, electron plasma that is uniformly mag-
netized. On the average, charge neutrality is assumed with
a background of immobile positively charged ions of den-
sity n, ions per cubic meter, and a collection of mobile
negatively charged electrons having an average density also
equal to n,. The set of vector nonlinear differential equa-
tions governing whistler propagation are
= N
vVX&+ Mo—é't— =

vxﬁc—eo%: —engi+eo(V-8)5+4,  (39)

%%+n5+a><a>c= ~(8-V)5—mSXL  (36)
where &, J(, and © are the time and spatially varying
electric field intensity, magnetic field intensity, and veloc-
ity vectors; , isthe electron vector cyclotron frequency; ¢,
is the impressed current density; and 7 is the electron
charge to mass ratio. Note the nonlinear terms, (Vv - &),
—(9-V)?, and — npq® X I in (34)~(36).

The problem to be investigated involves the nonlinear
whistler propagation in the direction of k at an angle ¢
with respect to the static magnetic flux density B,,. To
explore solutions which are uniform waves propagating in
the z-direction (i.e., k = k,£), it is convenient to write

0 (34)

&=26,(z|t)+ 96,(z|t)+ 26,(z]1) (37)
H=23C(z]0)+ pIC,(2]t)+ 2K (]t)  (38)

and
o= %o,(z|t)+ po,(z|t)+ Sv,(z|2). (39)

In order to excite the circularly polarized waves of the
whistler mode, Lee [6] applies current sheets using dense
arrays of filamentary conductors perpendicular to each
other and to the direction of propagation, such that

$1=28(2)§()+ 7 8(2),(2).

The impressed current source in this analysis is assumed to
be of the more general form given by

glzrﬁilx(zli)-}-y}‘g’ly(zlt)'

IX. GENERATION OF GENERALIZED GREEN’S
FUNCTIONS IN THE TRANSFORM DOMAIN

The nonlinear problem as described in (37), (38), and
(39) involves a system with the two inputs— ¢, and §, —and
nine outputs—the three components of the three vector
fields. A Volterra series solution is given by

ai(z)t)= 3 a,(z]t)

n=1

(40)

(41)

(42)

for a=&, I, and v and for ¢ = x, y, and z. The nth order
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portion of the fields due to the two excitations is given by

an(z1)= S apnonelzlt) )

n=0

where

a(nl,n—nl)é(zlt):f f

Yzt

o f 8a(ny, n—n)t
zntn

- (21’22""’anflitz""stn)

: H gIX(Z_Zm't_tp;)de]dtpl

=1

II },V(z —z, |t— th) dz, dt, . (44)

pr=ni+1

Note, for each of the nine outputs there are two first-order
terms a g(2|?) and a ;),(z|t) corresponding to inputs
$(z|?) and ﬁ,y(z|t), respectively.

Using plane-wave probing inputs, the nine dimensional
vectors of linear Green’s functions in the wave-
number /frequency domain are given by

— T, _
Gammlk:l0] = Dlk,e] ™ Ty ) (43)
for m=0 and 1; where
o ]
0
0
—————— _
‘I(I_m)m) = 1 mm (46)
0
0
L 0 ]
and
0 _.]kz 0 : _jwnu'O
Jk, 0 0 0
0 0 0, o0
ﬁ@f_b‘__ﬁT__ﬁ__
Dlkjw]=| O o O i jk,
— ) 0 jweo: 0
_{_‘B—_—61_“6“_
0 n 0 0
0 0 n 1 0
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Form=0,1,---, and M, where

M
ki= 3k, (49)
n=1
and
M
=3 w,. (50)
n=1

The components of the M th-order driving term J; 5/ ,, [ *]
are made up of the sums of products of lower order
transforms of the generalized Green’s functions.

X. SoLUTION OF NONLINEAR WHISTLER PROBLEM
FOR INPUT THAT IS SINUSOIDAL IN TIME AND
IMPULSIVE IN SPACE

In order to excite the right-hand circularly polarized
waves of the whistler mode in the laboratory, Lee [6]
suggests the use of dense arrays of filamentary conductors
perpendicular to each other. For a wave propagating in the
+ z-direction, the impressed current density is of the form

C, (z]t) = e, {cos (wyt)2 +sin(wyt) 7} 8(z).  (51)

The vector of nine linear output components a,(z|¢) is
given by

a\(z|t) :%Cl{ G(1,0)(Z[ —wp) — J Go,n(z] — @) }ejw‘)t

+%C1{ G(l,O)(Z|“’0) +jG(0,1)(Z|°’0) }e_jwot-

(52)

A linear Green’s function in the spatial /frequency domain
Gy(zlw) is related to G,[k,|w] via the inverse Fourier

0 0 : 0 0 0
— jwhg 0 1+ 0 0 0

0 — jwpg : 0 0 0
k.0 Temg 0 0

0 0 + © en, 0 (47)
__O _____ 0 __:_ _0___—0___er_zo_

0 0 ! —jo o —w,

0 0 : W, Tjeo e

0 0 : @, —w, —Jjw

In the Volterra series, formulation of the nonlinear whistler problem, the M th-order portion of a field component, as
given in (43), contains M + 1 terms. Thus, characterization of the M th-order behavior involves determination of (M + 1),
Mth order generalized Green’s functions for each of the field quantities of interest. The Mth-order generalized Green’s

functions in the transform domain are given by

-1
G(M—m,m)[klz’ Kozttt sk |01, 05, cwy] = D[kf|w2] J(M—m,m)[klz’ koo,
_— i

(48)

kmzlwl’w27. : .7""M] .
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transform
G, ( zlw ) = (53)

For the input given in (51), the vector of nine second-
order output field components a,(z|¢) is given by

1 .
_— Jjk,z
2W‘/};G,[k1|w]e dk,.

a2(z|t) 2%012{ G(2,0)(z’ z| — wp, _‘*’o)

—jG(l,l)(Z’ZI—wO’_wO)
Go2(2, 2| — wp, = wy) }efz“’O’
+4cl{ (20)(2 z[wy, @) +j G, 1)(2 z|wy, wy)

- G(o,z)(z’ 2|y, 0) }e—jzw"t

+%012{2 Ga,0(2, 2| — @y, wy) +fG(1,1)(Za z| — wg, wp)

_jG(l,l)(Zs z|wg, _"-’0) —2G(0’2)(z, z| _‘*’0>‘*’0) } (54)

Evaluation of the output requirés knowledge of the gener-
alized Green’s functions in the spatial /frequency domain
for specific values of frequency A second-order gener-
alized Green’s function in the spatial /frequency domain
Gz(zl,zzlwl,%) is related to G,[k,,, k,,|w,,w,] via the
two-fold inverse Fourier transform relationship

GZ(ZU Zz|"-’1,“°2) =

e, z,’kz2|"-’1a‘°2]

(2 y
2
. H el*p:2p dkpz

p=1

(55)
In particular

(56)

Gz(z’ Z|"-’1"*’2):G2(21, 22|w17w2)!11=zz=2

is desired for specific values of w, and w, (% w,).

The above procedure requires performing a two-dimen-
sional inverse transform followed by an association of
spatial variables (i.e., z; = z, = z). A more attractive proce-
dure is to associate variables in the transform or wavenum-
ber domain such that only a single dimensional inverse
Fourier transform is required. This association of variables
in the transform domain was originally developed by
George [7]. George’s technique is applied to the evaluation
of Gy(z,z|w,w,) for the nonlinear whistler problem in
Dalpe [8].

XI. NUMERICAL COMPARISON OF THE FIRST- AND

SECOND-ORDER PLANE-WAVE RESPONSES

A plane wave propagating in the -+ z direction with
angular frequency w-has the form e/*:~“), The linear
plane-wave response with angular frequency w, is now
compared to the second-order plane-wave response at an-
gular frequency 2w,.

From (52), that portion of the linear response that can
contribute plane waves propagating in the - z-
direction with angular frequency w, is given by

%cl{ Ga,o(zlwo) +j G, 12| wp) }e_f"""’.

(57)
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Likewise, from (54), the part of the second-order response
that can contribute plane waves propagating in the + z-di-
rection with angular frequency 2w, is given by o

%012{ G(Z,O)(Z" z|w, "-’0) +Jj G(l,l)(zs z|wy, W)
= G2z, 2wy, wp) }e_fzwo’. (58)

The generalized Green’s functions in the wavenumber
domain for constant & can be written in terms of expan-
sions in terms of the poles in k,-space. The required
z-space expressions are given by the corresponding inverse
Fourier transforms. Plane-wave solutions of the form de-
sired correspond to positive real poles in k,-space. The
positive real poles yield plane waves of the form desired.
Solution of the linear dispersion relation (Appleton—
Hartree dispersion relation [9])

k2
nrE—rt—=]
W oo
2
. . 1/2
, wiw’sin’@ wlwtsin®d s 9 o
— STy T 5 T w'wcos*0
2("" _""p) 4(«)2—0)3)

(59)

for propagation in an infinite homogeneous collisionless
plasma with w = w, yields the poles in k,-space. For whis-
tler mode propagation, only one real positive pole exists
(p;)- The second-order generalized Green’s functions in
the wavenumber /frequency domain contain two poles in
k -space for w; = w, = w that can be real and greater than
zero. The pole at 2 P, 1s positive-real for all w, where the
linear whistler propagates. The pole at g, corresponds to
the positive-real root of k, in the linear dispersion relation
for w = 2w, (if it exists). The second-order response due to

the sinusoidally varying time function given in (53) con-

tains terms with exponential behavior given by e/?212= 200
and e/(177 20D Note that the second-order response con-
tains two plane waves with different phase velocities due to
the different propagation constants (2p; and ¢,). A com-
puter program was written to numerically evaluate the
linear and second-order plane-wave responses. In Figs. 2
through 5 the magnitude of the linear response and the
magnitudes of the ratio of the second-order responses to
the linear response are plotted for the x-component of the
b field.

As was stated earlier, plane-wave propagation corre-
sponds to real poles in k,-space. Real poles exist for cone
angles less than the resonance cone angle fppg. As 6
approaches fyg, the real poles of the whistler in k,-space
approach infinity. The equation for the resonance cone is
given by

(- ) 2= o?)

2f 24 .2 2
w(wp+wc w)

(60)

2 —
an“fypps =
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Fig. 5. Plane-wave responses for w,= 60X 108 rad/s, w,=1.76X10°
rad/s, and wy = 0.5 105 rad/s as a function of the angle between the
vector wavenumber and the static magnetic field for &,(z]¢).

Fig. 3. Plane-wave responses for w,=100X10° rad/s, w,=25x10°
rad/s, and wy =10X10° rad /s as a function of the angle between®he
vector wavenumber and the static magnetic field for & (z|?).
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In Figs. 2 and 4, the magnitudes of the plane-wave
responses are plotted as a function of the excitation
-frequency w, for § =45°. As «,; increases, the resonance
condition (60) is approached and the poles.in k,-space
approach infinity and become imaginary for larger values
of w,. The wavenumber p, of the linear plane wave is
determined by the pole location -for @ =w,. Thus, the
linear plane wave and, consequently, the second-order plane
wave with wavenumber 2 p, are cut off for

1/2
wcz+w;—(wg+w;) /2|2

3 . (61)

(A

The wavenumber g, of the second-order plane wave is
determined by the pole location in & ,-space for w=2ay.
This plane wave will cut off for

w + w? —(w + w? )1/2 1/2
: . (62)

1
Wy >3

The expansion of the second-order Green’s functions in
terms of their k,-space poles has assumed that the poles at
2p, and q, are distinct. Should 2p, =¢4,, a second-order
pole exists and the result is a term whose amplitude is
linear in z. Under these conditions, the convergence of the
Volterra series is questionable except for small z, but the
unbounded nature of the term can be removed by adding a
small amount of damping. The condition 2 p, = ¢q; means
that both first- and second-order responses are natural
modes for propagation, and the effect of the nonlinear
coupling is enhanced. Given that p, is a real pole for
® = w, the condition under which 2p, is also a real pole
for w=2w, can be derived from the linear dispersion
relation. For w, > wy, it is met when

%6
sujf1— -
2(w0~wp)
205 1/2
= wow,cos 012 1+—0—"——‘—°—°—S2
,(‘“’0—‘*’3)
1/2
2 2 20 : 20
|14 Leplanfoin (63)
4(w(2,-—w3)

If it is assumed that w,>> w,, then for a large range of 4 less
than 90°, (63) can be approximated by

w,cosd
3

In the ionosphere, the thermal nonlinearity, which gener-
ates a third harmonic, is generally dominant [11] and little
consideration has been given to the cold plasma mecha-
nisms treated here. Nevertheless, the relation given by (64)
may be satisfied for the second harmonic when a similar
relation for the third harmonic cannot be satisfied. Then,
the second-harmonic generation should dominate.

(69)

Wy =~
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XII.

The Volterra functional series is a powerful tool in the
analysis of mildly nonlinear systems. A great deal of work
has been done by other investigators in developing the
theory as it ‘applies to circuit type problems- (problems
where the linear behavior is characterized by linear impulse
response h(t)). The major emphasis of this work has been
the logical extension of the theory to systems whose linear
behavior is characterized by Green’s functions. A set of
generalized Green’s functions was used to characterize
mildly nonlinear electromagnetic field problems and to
predict system responses. Application of the Volterra ap-
proach was illustrated by investigating whistler-mode prop-
agation in a cold collisionless electron plasma.

CONCLUSIONS
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A Study of the Noise-Temperature
Performance of a Satellite Communications
Low-Noise Amplifier Subsystem

MITSUGI KAJIKAWA

Abstract — The heart of the low-noise amplifier (LNA) subsystem is the
parametric amplifier which consists of a parametric amplifier proper and a
circulator. The LNA subsystem can be simplified into an equivalent circuit,
to evaluate its noise-temperature performance by assuming that it consists
of a parametric amplifier proper and a circulator, which in its overall sense
includes the additional components of the input line as elements in one arm
of the circulator. Using this simplified equivalent circuit, the noise-temper-
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The author is with the Microwave and Satellite Communications Divi-
sion of Nippon Electric Company, Ltd., Ikebe-cho, Midori-ku, Yokohama,
Japan. .

ature performance is analyzed theoretically and provides a precise value for
the LNA subsystem noise-temperature degradation, the noise-temperature
increase of the earth-station receiving system caused by connecting an
actual antenna to the subsystem and the measurement error of the
HOT/COLD load noise temperature measurement method.

I. INTRODUCTION

“N A SATELLITE communications earth station, the
low-noise amplifier (LNA) subsystem is one of the
most important subsystems and its noise temperature per-
formance makes a major contribution to the figure of merit
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